



# WHAT IS THIS "MODEL" YOU SPEAK OF?

**Bridging the Communication Gap** 

**FX** 

## What am I talking about?

- Bridging the communications gap
  - Speaking technically to a non-technical audience
  - Avoid causing the "glazed gaze"
- Provide some background to what that engineer is saying
  - Deciphering or translating the technical language
  - o What is a model?
- Latest improvements in hydraulic modeling
  - New features and capabilities



**Bridging the Gap** 



Couldn't we communicate better if we built a bridge?

## "Engineering Language"

- "Due to the numerous flow bifurcations, we utilized a finite volume model to simulate the complex hydraulic system using the full momentum version of the Saint-Venant equations."
- What they meant to say; "We developed a model of the project area to represent the flood."





## **Simplify the Message**

- Keep your audience in mind
  - Technical and non-technical
    - Mother rule or K.I.S.S.
- Define terms and don't interchange them
  - Use solely that <u>one</u> term
    - 1% annual-chance, 100-yr flood, Q100, base flood
      - » Not once every 100 years
  - Floodplain versus floodway
- Use memorable events
  - o 2011 was 1,000 cfs, the represented event is 2,000 cfs
  - Helps with the "I've lived here 10 years and it's never flooded."
- Use images, figures, text on maps



## **Simplify the Message**

- Avoid acronyms
  - BFEs and WSELs → Elevation of the flood
- Avoid modeling/technical talk
  - Headloss, Manning's roughness, conveyance, interpolation
- o Avoid referencing FEMA and local guidelines
  - Appendix X.1.3 of such and such states that...
  - This is standard practice
- o <u>Understand the audience's point of view</u>



## **Technical Talk**

- Discharge
- Steady state

## Non-technical talk

- Flow (i.e. how much water)
- Discharge is constant over time



## **Technical Talk**

- Discharge
- Steady state
- Unsteady state

## Non-technical talk

- Flow (i.e. how much water)
- Discharge is constant over time
- Discharge changes over time



### **Technical Talk**

- Discharge
- Steady state
- Unsteady state
- 1% annual-chance, 100-yr flood, Q100, base flood
- Roughness
- Topography
- Cross section
- Interpolation
- Model



### Non-technical talk

- Flow (i.e. how much water)
- Discharge is constant over time
- Discharge changes over time
- 1% chance of that discharge happening within the year
- Resistance to flow based on vegetation and smoothness of the surface
- Representation of the surface
- Representation of the surface along a line
- Straight line between two points
- ????



## So...what is a hydraulic model?

- Set of calculations
- <u>Purpose</u>: Running numerous equations quickly
  - Similar to a group of spreadsheets talking to each other
- Allows for quick analysis
- Allows for simple comparisons of scenarios
- Most models include some form of mapping assistance

|                |          |                   | E222 000                             | 3114.500                              | E3E7 000             | 3114.800               | E 202 200                       |                                          |
|----------------|----------|-------------------|--------------------------------------|---------------------------------------|----------------------|------------------------|---------------------------------|------------------------------------------|
| 000            | 5307.000 | 3114.400          | 5332.000                             |                                       | 5357.000             |                        | 5382.000                        | 3114.906                                 |
|                | 5432.000 | 3115.200          | 5457.000                             | 3115.600                              | 5482.000             | 3118.600               | 5511.000                        | 3121.300                                 |
| 00             | 5542.000 | 3124.900          | 5548.000                             | 3123.900                              | 5557.000             | 3124.200               | 5595.000                        | 3124.900                                 |
| 00             | 5646.000 | 3125.300          | 5675.000                             | 3125.600                              | 5702.000             | 3125.300               | 5742.000                        | 3125.200                                 |
| 00             | 5809.000 | 3122.500          | 5878.000                             | 3121.600                              | 6001.000             | 3121,400               | 6040.000                        | 3122.000                                 |
| 100            | 6151.000 | . 3122.800        | 6250.000                             | 3122.000                              | 6266.000             | 3124.400               | 6297.000                        | 3121.700                                 |
| 00             | 6334.000 | 3120.300          | 6346.000                             | 3120.300                              | 6483.000             | 3122.100               | 6545.000                        | 3121.700                                 |
| 00             | 6588.000 | 3124.400          | 6757.000                             | 3125.200                              | 6792.000             | 3125.200               | 5827.000                        | 3120.200                                 |
|                | 6862.000 | 3120.900          | 6868.000                             | 3123.200                              | 6877.000             | 3120.200               | 6900.000                        | 3120.200                                 |
| 00             | 0002.000 |                   |                                      |                                       |                      |                        |                                 |                                          |
| 00             | 7024.000 | 3127.600          | 7029.000                             | 3127.900                              | 7070.000             | 3127.200               | 7108.000                        | 3127.500                                 |
|                | 7548.000 | -3124.000         | 7587.000                             | 3124.400                              | 7633.000             | 3123.100               | 7708.000                        | 3128.000                                 |
| 000            | 7750.000 | 3130.900          | 7770.000                             | 3129.200                              | 7780.000             | 3132.300               | 7791.000                        | 3134.800                                 |
| 100            | 7940.000 | 3144.200          | 8016.000                             | 3162.100                              | d050.000             | 0.000                  | 0.000                           | 0.000                                    |
| 154            | .050     | .038              | 0.000                                | 0.000                                 | 0.000                | 0.000                  | 0.000                           | 0.000                                    |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
| TERE!          |          |                   | ****                                 | 2400 000                              | 3460 000             | 2601 200               | 0.000                           | 4 4 4 4                                  |
| 700            | 90.000   | 1833.000          | 2120.000                             | 3600.000                              | 3450.000             | 3503.000               | 0.000                           | 0.006                                    |
| 700            | 1456.000 | 3135.700          | 1474.000                             | 3135.200                              | 1483.000             | 3136.800               | 1490.000                        | 3136.800                                 |
| 900            | 1508.000 | 3134.700          | 1521.000                             | 3134.000                              | 1543.000             | 3132.960               | 1594.000                        | 3132.400                                 |
| 100            | 1729.000 | 3129.900          | 1770.000                             | 3129.800                              | 1813.000             | 3130.300               | 1833.000                        | 3126.500                                 |
| 100            | 1846.000 | 3116.500          | 1859.000                             | 3116.200                              | 1883.000             | 3116.300               | 1908.000                        | 3116.500                                 |
| 00             |          |                   |                                      |                                       | 2010.000             | 3118.500               | 2035.000                        | 3119.800                                 |
|                | 1959.000 | 3117.300          | 1986.000                             | 3118.300                              |                      |                        |                                 |                                          |
| 100            | 2085.000 | 3124.600          | 2115.000                             | 3129.400                              | 2120.000             | 3129.000               | 2128.000                        | 3127.500                                 |
| 500            | 2154.000 | 3126.900          | 2173.000                             | 3124.600                              | 2186.000             | 3124.600               | 2196.000                        | 3131.700                                 |
| 200            | 2251.000 | 3129.800          | 2307.000                             | 3129.500                              | 2368.000             | 3120.500               | 2429.000                        | 3128.400                                 |
| 005            | 2483.000 | 3129.000          | 2523.000                             | 3128.700                              | 2561.000             | 3127.800               | 2600.000                        | 3128.100                                 |
| 000            | 2636.000 | 3123.200          | 2651.000                             | 3122.600                              | 2660.000             | 3176.500               | 2676.000                        | 3130.400                                 |
| 00             | 32.000   | 3131.600          | 2775.000                             | 3131.800                              | 2812.000             | 3130 900               | 2844.000                        | 3129.500                                 |
|                |          |                   |                                      |                                       |                      |                        | 2994.000                        | 3134.400                                 |
| 000            | 27.5.000 | 3130.500          | 2939.000                             | 3133.300                              | 2555.000             | 3134.400               |                                 |                                          |
| 00             | 3033.000 | 3134.700          | 3050.000                             | 3133.200                              | 3056.000             | 3133.800               | 3059.000                        | 3133.600                                 |
| 500            | 3066.000 | 3133.700          | 3078.000                             | 3132.500                              | 3095.000             | 3133.000               | 3126.000                        | 3134.000                                 |
| 500            | 3210.000 | 3133.800          | 3249.000                             | 3133.300                              | 3301.000             | 3133.200               | 3341.000                        | 3134.130                                 |
| 00             | 3560.000 | 3135.500          | 3585.000                             | 3136.500                              | 3605.000             | 3136.100               | 36-9.000                        | 3136.100                                 |
| 005            | 3717.000 | 3136.200          | 3743.000                             | 3135.900                              | 3765.000             | 3136.600               | 3810.000                        | 3137.300                                 |
| 100            | 3936.000 | 3137.900          | 4004.000                             | 3138.100                              | 4063.000             | 3138.700               | 4135.000                        | 3137.000                                 |
| 090            | .058     | .035              | 0.000                                | 0.000                                 | 0.000                | 0.000                  | 0.000                           | 6.000                                    |
| 770            | .076     | .033              | 0.000                                | 0.000                                 | 0.000                | 0.000                  | 0.000                           | 0.000                                    |
|                |          |                   |                                      |                                       |                      |                        | ****                            |                                          |
| ~~             |          | 700 000 000       |                                      |                                       | to be below to       |                        |                                 | 1 2 2 2 2 2                              |
| Description in | 7-1-1-1  | The second second |                                      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | The Res 200 Sec. 100 | the best than the con- | OF REAL PROPERTY AND ADDRESS.   | 20 20 20 20 20                           |
|                |          |                   |                                      |                                       |                      |                        | All the second second second in |                                          |
|                |          | for the state of  |                                      |                                       |                      |                        |                                 |                                          |
|                |          | 于一大               | AH.                                  |                                       |                      | * a : ; ;              |                                 |                                          |
|                |          |                   | ATT                                  |                                       |                      |                        |                                 | Cold School Printer Philad Street Street |
|                |          |                   | (III)                                |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
| 5 TO 8 C Y     |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   | AND REAL PROPERTY AND REAL PROPERTY. |                                       |                      |                        |                                 |                                          |
|                |          |                   | 600.                                 |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |
|                |          |                   |                                      |                                       |                      |                        |                                 |                                          |

5232.000

3119.500

5240.000

3118.600

5247.000

3116+500

## What kind of model? Depends on what you want to know and the system.

- Single cross section
- Structure (i.e. culvert at a roadway)
- Single channel with connected floodplain
- Channel and/or floodplain splits
- System experience flood over days or it all happens within hours
- Analyzed system enclosed
- Analyzing temperature, sediment, turbulence, or habitat

### Selecting the Right Model















#### NORMAL DEPTH

- » FlowMaster
- » Hydraulic Toolbox

#### CULVERT

- » HY-8
- » CulvertMaster

#### 1D STEADY

- » HEC-RAS
- » MIKE 11
- » XPSWMM
- » SWMM 5

#### **1D UNSTEADY**

- » HEC-RAS
- » MIKE 11
- » XPSWMM
- » SWMM 5
- » TUFLOW

#### **2D UNSTEADY**

- » HEC-RAS
- » SRH-2D
- » FLO-2D
- » MIKE 21
- » TUFLOW
- » XPSWMM
- » RiverFlow2D
- » TrimR2D
- » MIKE FLOOD
- » SWMM 5



## **Modeling Floodplains Typically**

- HEC-RAS
- MT is typically performed using steady state
- Based on numerous cross section locations
  - o Placement decided by engineer
- Can incorporate bridges and culverts
- Solution between cross sections
- Review output and adjust

Much more than "just hit run."



## **HEC-RAS Version 5.0.4 Update**

- What is new
  - o Beta testing 5.0.4
- What is in the plans



- New RAS Mapper Pre-Processor Tools
  - Extraction of elements
    - Rivers
    - Cross sections
    - Storage Area
    - 2D elements
    - Manning's roughness layer







- Enhancements to Storage Area / 2D Connections
  - Ability to specify the X and Y coordinates for U/A and D/S ends of each hydraulic outlet



- New breakline controls
- New polygon mesh refinement tool
  - Define a new grid size within a defined polygon





Graphics provided by Gary Brunner (HEC)

- Variable Time Step
  - o Both 1D and 2D Simulations
  - o Two Methods:
    - Based on Courant Number monitoring
    - User defined table of dates and time steps

| Genera | al 2D Flow Op     | otions   1D/2D Options Advanced                                      | d Time | Step Contr  | rol 1D Mixed Flow Options |
|--------|-------------------|----------------------------------------------------------------------|--------|-------------|---------------------------|
| C F    | ixed Time Step    | (Basic method)                                                       | 0.5 S  | econd       | -                         |
| ( A    | djust Time Ste    | p Based on Courant                                                   | 7.     |             |                           |
|        | Maximum Cour      |                                                                      | 1.     | _           |                           |
| 1      | Minimum Coura     | ant:                                                                 | 0.5    | _           |                           |
| 1      | Number of step    | os below Minimum before doubling:                                    | 10     |             |                           |
| N      | Maximum num       | ber of doubling base time step:                                      | 1      | 1.00 se     | С                         |
| N      | Maximum num       | ber of halving base time step:                                       | 1      | 0.25 se     | С                         |
|        | TOTAL PROPERTY OF | nodology<br>Velocity * dt / Length)<br>Time (flow out * dt / Volume) |        |             |                           |
| C A    | djust Time Ste    | p Based on Time Series of Divisors                                   |        | Verify Date | es                        |
|        | Time Step         | Date(ddMMMyyyy hhmm)                                                 |        | Divisor     |                           |
|        | 1                 |                                                                      |        |             |                           |
|        | 3 4               |                                                                      |        |             |                           |
|        | 3                 |                                                                      |        |             |                           |
|        |                   |                                                                      |        |             |                           |
|        | 5                 |                                                                      |        |             |                           |
|        | 6                 |                                                                      |        |             |                           |
|        | 7                 |                                                                      |        |             |                           |

**HEC-RAS Unsteady Computation Options and Tolerances** 

| <b>RAS Version</b> | Timestep (s) | Error (%) | Run Time (min) |
|--------------------|--------------|-----------|----------------|
| 5.0.3              | 1            | 0.220     | 74             |
| 5.0.3              | 0.5          | 0.210     | 184            |
| 5.0.4              | 0.25 - 1     | 0.004     | 42             |

-

- Internal Boundary Conditions Lines in 2D Area
  - User defines a BC line internally
  - Able to define a hydrograph
- 64-bit Version of RAS Mapper
  - Larger domains, terrain sets
  - Improved results processing
- 64-bit 2D Processor
  - Larger domain
  - Faster processing
- Computational Engine further parallelized



Graphics and table provided by Gary Brunner (HEC)

- New Velocity Term for 2D Boundary Conditions
  - · New approach estimates starting velocity
- Sediment
  - New grain class options
  - New transport functions
- Bug Fixes
  - Velocity fields
  - Less sensitive to grid sizes
  - Dry/Wet cell interfaces



## 5.1 Release

- o 1D Finite Volume Solver
  - More stable solution
  - Improvements in transitions between flow regimes
- Junction analysis performed as a single 2D cell

Right Floodplain Main Channel Left floodplain i = 3i = 2i = 1 $\triangle X_R$  $\triangle X_L$ ∆ Xc J+1



Graphics and table provided by Gary Brunner (HEC)

## 5.1 Release

- Enhancements to Mesh Generation Tools
- o Initial Conditions for 2D Areas
  - Polygon and point values for setting initial conditions
- Pump Stations in 2D Domain
- Output for internal SA/2D Connections
- Spatially Varied Precipitation and Infiltration
- Wind Forces
- 2D Mesh Importer
  - SMS meshes: ADH, SRH and Tuflow
- Use DSS7 libraries
  - Smaller time steps
    - » Currently 1 min in DSS6

## Questions?